Ex 1 Sujet A (= ex 5 sujet B)

1. a) \(f(1) = -2 \) et \(f(0) = -2 \)

1. b) Le antécédents de 4 par \(f \) sont -2 et 3 ; -3 m’en a aucun.

1. c) Le minimum de \(f \) vaut environ -2,1, atteint pour \(x = 0,5 \).

1. d) Equation \(f(x) = -2 \) : \(S = \{0 ; 1\} \)

1. e) Inéquation \(f(x) > 4 \) : \(S = [-3 ; -2 [\cup] 3 ; 4 [\)

2) Tableau de variations :

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>0,5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td>10</td>
<td>10</td>
<td>-2,1</td>
</tr>
</tbody>
</table>

3) Tableau de signes :

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>-1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

4) a) \(g(x) = x^2 + 2 \) est affiné, représenté par une droite

(voir annexe) passant par \((0 ; 2)\) car \(g(0) = 2 \) et par \((4 ; -2)\) car \(g(4) = -2 \)

4- b) Equation \(f(x) = g(x) \) : \(S = \{-2 ; 2\} \)

4- c) Inéquation \(f(x) \leq g(x) \) : \(S = [-2 ; 2 [\)

Ex 2 Sujet A (= Ex 4 sujet B)

1. Figure (voir annexe)

2. K milieu de \([BC]\) donc \(x_K = \frac{x_B + x_C}{2} = \frac{0 + 7}{2} = 3,5 \) et \(y_K = \frac{y_B + y_C}{2} = \frac{-2 + 4}{2} = 1 \)

Donc \(K (3,5 ; 1) \).

3. a) \(AB^2 = (x_B - x_A)^2 + (y_B - y_A)^2 = (0 - (-3))^2 + (-2 - 2)^2 = 1 + 16 = 17 \)

Donc \(AB = 17 \approx 4,1 \)

De même, on trouve \(AC^2 = 68 \) d’où \(\frac{AC}{BC} = \frac{68}{8 \sqrt{5}} \approx 8,12 \)

et \(BC^2 = 85 \) d’où \(\frac{BC}{BC} = \sqrt{85} \approx 9,2 \)

3. b) \(AC^2 + AB^2 = 17 + 68 = 85 = BC^2 \) donc \(ABC \) est rectangle en \(A \)

d’après la réciproque du théorème de Pythagore.
4. a) Soit D le 4ème sommet du parallélogramme ABDC.
On a donc \(\overrightarrow{AB} = \overrightarrow{CD} \).
Or \(\overrightarrow{AB} = (x_B - x_A, y_B - y_A) \) et \(\overrightarrow{CD} = (x_D - x_C, y_D - y_C) \).

Comme \(\overrightarrow{AB} = \overrightarrow{CD} \), alors \(x_D - 7 = 1 \) et \(y_D - 4 = -4 \),
d'où \(x_D = 8 \) et \(y_D = 0 \). Donc \(D(8, 0) \).

4. b) Comme le parallélogramme ABDC possède en A un angle droit
(car ABC rectangle en A), alors c'est un rectangle.

Ex 3 Sujet A (= Ex 2 Sujet B)

1-a) Arbre

1
 |
 3| 6
 | |
 1| 6 |
 | 9 |
 | |
 3| |
 | |
 3| |
 | |
 9| |
 | |
 9| |
 | |
 9| |

1-b) L'expérience possède donc 12 issues.

2-a) Parmi les 12 issues équiprobables, 3 conduisent à un nombre pair,
donc \(P(A) = \frac{3}{12} = \frac{1}{4} = 0,25 \).
De même, \(P(B) = \frac{6}{12} = \frac{1}{2} = 0,5 \). \(P(\overline{B}) = 1 - P(B) = 1 - 0,5 = 0,5 \).

2-b) ANB = "Le nombre obtenu est pair et multiple de 3".
Les issues réalisant ANB sont 36 et 66 donc \(P(ANB) = \frac{2}{12} = \frac{1}{6} \approx 0,17 \).

2-c) AUB = "Le nombre obtenu est pair ou multiple de 3".
\[P(AUB) = P(A) + P(B) - P(ANB) = \frac{1}{4} + \frac{1}{2} - \frac{1}{6} = \frac{7}{12} \approx 0,58 \].
Ex 4 Sujet A (= Ex 6 Sujet B)

1. Prix à payer pour une commande
 \[\times \text{ de 130 } € : 130 € - 25 € = 105 € \]
 \[\times \text{ de 80 } € : 80 € - 10 € = 70 € \]
 \[\times \text{ de 300 } € : 300 € \times 0,18 = 240 € \]

2. Choisir le montant M > 20 de la commande

 Si \(M < 100 \)
 alors
 Afficher "le prix de la commande à payer est \(M - 10 \)"
 Sinon
 Si \(M < 200 \)
 alors
 Afficher "le prix de la commande à payer est \(M - 25 \)"
 Sinon
 Afficher "le prix de la commande à payer est 0,18 M"
 Fin Si
 Fin Si

Ex 5 Sujet A (= Ex 1 Sujet B)

1. \[\bar{x} = \frac{1 \times 26 + 2 \times 37 + \ldots + 9 \times 3}{26 + 37 + \ldots + 3} \]
 d'où \(\bar{x} \approx 4 \) \((2 \times 3,957) \)

2. Tableau (fréquences en %) (voir annexe)

3. 207 élèves \((66 + 75 + 35 + 31)\) fument entre 3 et 6 cigarettes par jour, au les 300, soit 69% \((207 : 300 = 0,69) \)

4. Tableau \((ECC)\) (voir annexe) 129 élèves fument au plus 3 cigarettes par jour.

5. Il y a 300 valeurs donc \(Me \) est la moyenne de la 150\(e\) (4) et de la 151\(e\) (4) : \(Me = 4 \).
 La moitié de ces élèves fument moins de 4 cigarettes par jour.

6. \(\frac{1}{4} \) de 300 = 75 donc \(Q_1 \) est la 75\(e\) valeur : \(Q_1 = 3 \).
 \(\frac{3}{4} \) de 300 = 225 donc \(Q_3 \) est la 225\(e\) valeur : \(Q_3 = 5 \).
Ex 6 Sujet A (= Ex 3 Sujet B)

Partie A

1. Pour 30 lots, le "bénéfice" réalisé est -1012 €, ce qui correspond à un déficit de 1012 €.

2. Un bénéfice de 143 € correspond à 63 lots vendus, ou à 65 lots...
 → On ne peut savoir !

3. \[\begin{array}{c|ccc}
 x & 0 & 64 & 180 \\
 \hline
 B & -3852 & 144 & -13312 \\
 \end{array} \]

4. Le bénéfice maximal est 144 € pour 64 lots vendus.

Partie B

1. \[(x - 52)(76 - x) = 76x - x^2 - 3352 + 52x = -x^2 + 128x - 3352 \]
 Donc \[B(x) = (x - 52)(76 - x). \]

2. \[B(55) = -55^2 + 128 \times 55 - 3352 = 63 \]
 Pour 55 lots, il réalise un bénéfice de 63 €.

3. \[B(x) = 0 \] lorsque \[(x - 52)(76 - x) = 0 \]
 \[x - 52 = 0 \quad \text{ou} \quad 76 - x = 0 \]
 \[x = 52 \quad \text{ou} \quad x = 76 \]

Tableau de signs :

\[
\begin{array}{c|cccc}
 x & 0 & 52 & 76 & 180 \\
 \hline
 x - 52 & - & 0 & + & + \\
 76 - x & + & + & 0 & - \\
 B(x) & - & 0 & + & - \\
\end{array}
\]

La société est rentable lorsque \[B(x) > 0 \], c'est à dire lorsque \[x \in]52; 76[\].
Annexe exercice 1 :

(ce à sujet B)

Annexe exercice 2 :

(ce à sujet B)

Annexe exercice 5 :

(ce à sujet B)

<table>
<thead>
<tr>
<th>Nombre de cigarettes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effectifs</td>
<td>26</td>
<td>37</td>
<td>66</td>
<td>75</td>
<td>35</td>
<td>31</td>
<td>15</td>
<td>12</td>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>Fréquences</td>
<td>9%</td>
<td>12%</td>
<td>22%</td>
<td>25%</td>
<td>12%</td>
<td>10%</td>
<td>5%</td>
<td>4%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Effectifs cumulés croissants.</td>
<td>26</td>
<td>63</td>
<td>125</td>
<td>244</td>
<td>239</td>
<td>230</td>
<td>285</td>
<td>253</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>